This thesis deals with the development and application in statistical physics of a general framework for irreversible and rejection-free Markov-chain Monte Carlo methods, through the implementation of the factorized Metropolis filter and the lifting concept. The first two chapters present the Markov-chain Monte Carlo method and its different implementations in statistical physics. One of the main limitations of Markov-chain Monte Carlo methods arises around phase transitions, where phenomena of dynamical slowing down greatly impede the thermalization of the system. The third chapter introduces the new class of irreversible factorized Metropolis algorithms. Building on the concept of lifting of Markov chains, the factorized Metropolis filter...