Low energy electron diffraction (LEED), Auger spectroscopy, scanning tunneling microscopy (STM) and angle-resolved photoemission (ARPES) have been used to study ultrathin films of alkali atoms deposited on Si(111)-v3´v3R30:B surface. An alkali-induced surface state of s-pz symmetry has been evidenced by photoemission being maximum close to the saturation coverage of 1/3 monolayer. A quantitative IV-LEED study evidences the H3 alkali adsorption site as predicted by ab initio calculations. High resolution ARPES data presented in this work evidence a band-folding, a large alkali-dependent semi-conducting gap and a narrow bandwidth. The Cs- induced surface band is shown to present a smaller gap together with a non-zero spectral weight at the Fe...