The olfactory bulb is mainly composed of excitatory cells, called mitral cells, interconnected via local inhibitory neurons, called granule cells. The analysis of electrophysiological data, recorded in vitro from rat olfactory bulb slices, shows that mitral cell firing is phase-locked to the fast local field potential oscillation. This phase-locking is largely reduced when the inhibitory synaptic conductance is pharmacologically blocked, hence highlighting the important role of synaptic inhibition. We find that the inhibitory conductance fluctuations are correlated to the local field potential oscillations. A relationship between the received inhibition and the phase of mitral action potentials is also revealed. The probability to fire a ph...