International audienceUnderstanding how water and solutes enter and propagate through freshwater landscapes in the Anthropocene is critical to protecting and restoring aquatic ecosystems and ensuring human water security. However, high hydrochemical variability in headwater streams, where most carbon and nutrients enter river networks, has hindered effective modelling and management. We developed an analytical framework informed by landscape ecology and catchment hydrology to quantify spatiotemporal variability across scales, which we tested in 56 headwater catchments, sampled periodically over 12 years in western France. Unexpectedly, temporal variability in dissolved carbon, nutrients and major ions was preserved moving downstream and spa...