À cause des singularités de la fonction de vraisemblance, l'approche par maximum de vraisemblance pour l'estimation des paramètres d'un mélange gaussien est connu pour être un problème d'optimisation mal posé. Nous proposons dans cette communication, une pénalisation de la fonction de vraisemblance par une distribution a priori de type gamma inverse qui élimine les singularités et rend ainsi ce problème bien posé. Une conséquence algorithmique intéressante d'un tel choix est de fournir une version pénalisée de l'algorithme EM qui conserve une structure de remise à jour explicite et qui garantit que les estimées ne sont pas singulières. Un exemple numérique met en évidence cette dernière propriété
AbstractAn optimized robust filtering algorithm for uncertain discrete-time systems is presented. To...
The problem of the likelihood function calculation is examined at parameter estimation of the stocha...
Let $Y\in\R^n$ be a random vector with mean $s$ and covariance matrix $\sigma^2P_n\tra{P_n}$ where $...
Due to singularities of the likelihood function, the maximum likelihood approach for the estimation ...
In this addendum, we present the EM algorithm of Lee and Lin (2010) custimized for fitting mixtures ...
AbstractThere have important applications of density kernel estimation in statistics. In certain con...
The inverse power law distributions are used as the model for fractal probability distributions that...
In this paper, a three parameter model which can be used in modeling survival data, reliability prob...
We focus on the distribution regression problem (DRP): we regress from probability measures to Hilbe...
International audienceThe analysis of spectra data deduced from proteomics studies in biology or inf...
This paper considers estimators of survivor functions subject to a stochastic ordering constraint ba...
We consider empirical autocorrelations of residuals from infinite variance autoregressive processes....
Cet article propose un algorithme d'identification aveugle de systèmes linéaires bruités. Le princip...
In many meta-analysis cases the estimator of the overall effect in independent trials or experiments...
The recent paper byYacoub et al. [1] introduces what is referred to as the η – κ distribution to des...
AbstractAn optimized robust filtering algorithm for uncertain discrete-time systems is presented. To...
The problem of the likelihood function calculation is examined at parameter estimation of the stocha...
Let $Y\in\R^n$ be a random vector with mean $s$ and covariance matrix $\sigma^2P_n\tra{P_n}$ where $...
Due to singularities of the likelihood function, the maximum likelihood approach for the estimation ...
In this addendum, we present the EM algorithm of Lee and Lin (2010) custimized for fitting mixtures ...
AbstractThere have important applications of density kernel estimation in statistics. In certain con...
The inverse power law distributions are used as the model for fractal probability distributions that...
In this paper, a three parameter model which can be used in modeling survival data, reliability prob...
We focus on the distribution regression problem (DRP): we regress from probability measures to Hilbe...
International audienceThe analysis of spectra data deduced from proteomics studies in biology or inf...
This paper considers estimators of survivor functions subject to a stochastic ordering constraint ba...
We consider empirical autocorrelations of residuals from infinite variance autoregressive processes....
Cet article propose un algorithme d'identification aveugle de systèmes linéaires bruités. Le princip...
In many meta-analysis cases the estimator of the overall effect in independent trials or experiments...
The recent paper byYacoub et al. [1] introduces what is referred to as the η – κ distribution to des...
AbstractAn optimized robust filtering algorithm for uncertain discrete-time systems is presented. To...
The problem of the likelihood function calculation is examined at parameter estimation of the stocha...
Let $Y\in\R^n$ be a random vector with mean $s$ and covariance matrix $\sigma^2P_n\tra{P_n}$ where $...