Para una función de Young, definimos el operador maximal generalizado asociado a dicha función y estudiamos estimaciones modulares y en norma con y sin pesos en el contexto de los espacios de tipo homogéneo. Demostramos que dichas estimaciones son todas equivalentes a una condición de tipo Dini que relaciona a las funciones relacionadas a los espacios con la asociada al operador. En particular obtenemos una generalización de un resultado de C. Perez y R. Wheeden (2001). En una segunda instancia caracterizamos a los pesos A1 de Muckenhoupt relacionados con estas estimaciones y la condición de Dini, extendiendo y mejorando un resultado de H. Kita (1996) y extendiendo a un contexto más general un teorema del mismo autor (2005). Para la demost...
Abstract. Let (X, d, µ) be a normal space of homogeneous type, X+ be the upper half-space equipped w...
Given a space of homogeneous type \((X,d,\mu)\), we prove strong-type weighted norm inequalities for...
We study the Hardy's inequality and derive the maximal theorem of Hardy and Littlewood in the contex...
We study weighted modular inequalities for a generalized maximal operator associated to a Young func...
In this paper we prove mixed inequalities for the maximal operator (Formula presented.), for general...
We characterize the class of weights related to the boundedness of maximal operators associated to a...
In [13] Muckenhoupt proved the fundamental result characterizing all the weights for which the Hardy...
The thesis consists of four chapters. In the first chapter, we develop a necessary and sufficient co...
The boundedness of the maximal operator in weighted Lebesgue spaces with variable exponent, over spa...
The boundedness of the maximal operator in weighted Lebesgue spaces with variable exponent, over spa...
The boundedness of the maximal operator in weighted Lebesgue spaces with variable exponent, over spa...
Let μ be a nonnegative Borel measure on Rd satisfying that μ(Q) ⩽ l(Q)n for every cube Q ⊂ Rn, where...
We derive weighted norm estimates which relate integral operators of potential type (fractional inte...
Operadores maximais dos tipos Hardy-Littlewood e fracionário controlam o comportamento de vários out...
We investigate variants of the maximal operator and show their applications to study boundedness of ...
Abstract. Let (X, d, µ) be a normal space of homogeneous type, X+ be the upper half-space equipped w...
Given a space of homogeneous type \((X,d,\mu)\), we prove strong-type weighted norm inequalities for...
We study the Hardy's inequality and derive the maximal theorem of Hardy and Littlewood in the contex...
We study weighted modular inequalities for a generalized maximal operator associated to a Young func...
In this paper we prove mixed inequalities for the maximal operator (Formula presented.), for general...
We characterize the class of weights related to the boundedness of maximal operators associated to a...
In [13] Muckenhoupt proved the fundamental result characterizing all the weights for which the Hardy...
The thesis consists of four chapters. In the first chapter, we develop a necessary and sufficient co...
The boundedness of the maximal operator in weighted Lebesgue spaces with variable exponent, over spa...
The boundedness of the maximal operator in weighted Lebesgue spaces with variable exponent, over spa...
The boundedness of the maximal operator in weighted Lebesgue spaces with variable exponent, over spa...
Let μ be a nonnegative Borel measure on Rd satisfying that μ(Q) ⩽ l(Q)n for every cube Q ⊂ Rn, where...
We derive weighted norm estimates which relate integral operators of potential type (fractional inte...
Operadores maximais dos tipos Hardy-Littlewood e fracionário controlam o comportamento de vários out...
We investigate variants of the maximal operator and show their applications to study boundedness of ...
Abstract. Let (X, d, µ) be a normal space of homogeneous type, X+ be the upper half-space equipped w...
Given a space of homogeneous type \((X,d,\mu)\), we prove strong-type weighted norm inequalities for...
We study the Hardy's inequality and derive the maximal theorem of Hardy and Littlewood in the contex...