International audienceWe provide in this work a robust solution theory for random rough differential equations of mean field type driven by a random rough path, with mean field interaction in both the drift and diffusivity. Propagation of chaos results for large systems of interacting rough differential equations are obtained as a consequence, with explicit optimal convergence rate. The development of these results requires the introduction of a new rough path-like setting and an associated notion of controlled path. We use crucially Lions' approach to differential calculus on Wasserstein space along the way
We give meaning to differential equations with a rough path term and a Brownian noise term and study...
AbstractWe study a class of linear first and second order partial differential equations driven by w...
This thesis studies various problems related to the asymptotic behaviour and derivation of mean fiel...
63 pages; v2: Version 1 of this work has been split in two seperate works, the first part of which i...
We address propagation of chaos for large systems of rough differential equations associated with ra...
This paper introduces path derivatives, in the spirit of Dupire's functional Itô calculus, for ...
27 pagesInternational audienceWe analyze common lifts of stochastic processes to rough paths/rough d...
In one of the last Saint Flour lectures in 2004, T. Lyons remarked that a Peano theorem for rough di...
This paper aims to provide a systematic approach to the treatment of differential equations of the t...
In the spirit of Marcus canonical stochastic differential equations, we study a similar notion of ro...
The purpose of this article is to solve rough differential equations with the theory of regularity ...
We introduce a notion of rough paths on embedded submanifolds and demonstrate that this class of rou...
AbstractWe consider controlled ordinary differential equations and give new estimates for higher ord...
In this article, we show how the theory of rough paths can be used to provide a notion of solution t...
We show how to generalize Lyons' rough paths theory in order to give a pathwise meaning to some nonl...
We give meaning to differential equations with a rough path term and a Brownian noise term and study...
AbstractWe study a class of linear first and second order partial differential equations driven by w...
This thesis studies various problems related to the asymptotic behaviour and derivation of mean fiel...
63 pages; v2: Version 1 of this work has been split in two seperate works, the first part of which i...
We address propagation of chaos for large systems of rough differential equations associated with ra...
This paper introduces path derivatives, in the spirit of Dupire's functional Itô calculus, for ...
27 pagesInternational audienceWe analyze common lifts of stochastic processes to rough paths/rough d...
In one of the last Saint Flour lectures in 2004, T. Lyons remarked that a Peano theorem for rough di...
This paper aims to provide a systematic approach to the treatment of differential equations of the t...
In the spirit of Marcus canonical stochastic differential equations, we study a similar notion of ro...
The purpose of this article is to solve rough differential equations with the theory of regularity ...
We introduce a notion of rough paths on embedded submanifolds and demonstrate that this class of rou...
AbstractWe consider controlled ordinary differential equations and give new estimates for higher ord...
In this article, we show how the theory of rough paths can be used to provide a notion of solution t...
We show how to generalize Lyons' rough paths theory in order to give a pathwise meaning to some nonl...
We give meaning to differential equations with a rough path term and a Brownian noise term and study...
AbstractWe study a class of linear first and second order partial differential equations driven by w...
This thesis studies various problems related to the asymptotic behaviour and derivation of mean fiel...