In this paper, we propose the Online Contextual Influence Maximization Problem (OCIMP). In OCIMP, the learner faces a series of epochs in each of which a different influence campaign is run to promote a certain product in a given social network. In each epoch, the learner first distributes a limited number of free-samples of the product among a set of seed nodes in the social network. Then, the influence spread process takes place over the network, other users get influenced and purchase the product. The goal of the learner is to maximize the expected total number of influenced users over all epochs. We depart from the prior work in two aspects: (i) the learner does not know how the influence spreads over the network, i.e., it is unaware of...