The Antartic ice sheet represents the world's largest potential contributor to sea level rise. Over 80 % of Antarctica's grounded ice drains through its fringing ice shelves which surround close to 45 % of the continent's shore. Because of Archimède' principle, the contribution of the ice to sea level is accounted for as soon as it flows through the grounding line, which defines the limit beyond which ice grounded on the bedrock starts floating on the ocean. Therefore, realistic modelling of grounding line dynamics is crucial to produce trustworthy projections of future sea level rise. This dynamics is affected by a number of physical processes, some of which are not properly represented in current ice flow models. This PhD thesis focuses o...