Network models are widely used to represent relations between interacting units or actors. Network data often exhibit transitivity, meaning that two actors that have ties to a third actor are more likely to be tied than actors that do not, homophily by attributes of the actors or dyads, and clustering. Interest often focuses on finding clusters of actors or ties, and the number of groups in the data is typically unknown. We propose a new model, the latent position cluster model, under which the probability of a tie between two actors depends on the distance between them in an unobserved Euclidean 'social space', and the actors' locations in the latent social space arise from a mixture of distributions, each corresponding to a cluster. We pr...