First Accurate Normalization of the $\beta$-delayed $\alpha$ Decay of $^{16}$N and Implications for the $^{12}$C$(\alpha,\gamma)^{16}$O Astrophysical Reaction Rate

  • Kirsebom, O.S.
  • Tengblad, O.
  • Lica, R.
  • Munch, M.
  • Riisager, K.
  • Fynbo, H.O.U.
  • Borge, M.J.G.
  • Madurga, M.
  • Marroquin, I.
  • Andreyev, A.N.
  • Berry, T.A.
  • Christensen, E.R.
  • Fernández, P. Díaz
  • Doherty, D.T.
  • van Duppen, P.
  • Fraile, L.M.
  • Gallardo, M.C.
  • Greenlees, P.T.
  • Harkness-Brennan, L.J.
  • Hubbard, N.
  • Huyse, M.
  • Jensen, J.H.
  • Johansson, H.
  • Jonson, B.
  • Judson, D.S.
  • Konki, J.
  • Lazarus, I.
  • Lund, M.V.
  • Marginean, N.
  • Marginean, R.
  • Perea, A.
  • Mihai, C.
  • Negret, A.
  • Page, R.D.
  • Pucknell, V.
  • Rahkila, P.
  • Sorlin, O.
  • Sotty, C.
  • Swartz, J.A.
  • Sørensen, H.B.
  • Törnqvist, H.
  • Vedia, V.
  • Warr, N.
  • de Witte, H.
Publication date
January 2018
Publisher
American Physical Society

Abstract

International audienceThe C12(α,γ)O16 reaction plays a central role in astrophysics, but its cross section at energies relevant for astrophysical applications is only poorly constrained by laboratory data. The reduced α width, γ11, of the bound 1- level in O16 is particularly important to determine the cross section. The magnitude of γ11 is determined via sub-Coulomb α-transfer reactions or the β-delayed α decay of N16, but the latter approach is presently hampered by the lack of sufficiently precise data on the β-decay branching ratios. Here we report improved branching ratios for the bound 1- level [bβ,11=(5.02±0.10)×10-2] and for β-delayed α emission [bβα=(1.59±0.06)×10-5]. Our value for bβα is 33% larger than previously held, leading to...

Extracted data

We use cookies to provide a better user experience.