We are developing a new, holistic data management system for genomics, which provides high-level abstractions for querying large genomic datasets. We designed our system so that it leverages on data management engines for low-level data access. Such design can be adapted to two different kinds of data engines: the family of scientific databases (among them, SciDB) and the broader family of generic platforms (among them, Spark). Trade-offs are not obvious; scientific databases are expected to outperform generic platforms when they use features which are embedded within their specialized design, but generic platforms are expected to outperform scientific databases on general purpose operations. In this paper, we compare our SciDB and Spark i...