Cognitive fault detection and diagnosis systems are systems able to provide timely information about possibly occurring faults without requiring any a priori knowledge about the process generating the data or the possible faults. This ability is crucial in sensor network scenarios where a priori information about the data generating process, the noise level or the dictionary of the possibly occurring faults is generally hard to obtain. We here present a novel cognitive fault detection and isolation system for sensor networks. The proposed solution relies on the modeling of spatial and temporal relationships present in the acquired datastreams and an ensemble of Hidden Markov Model change-detection tests working in the space of estimated par...