We investigate the general properties of Unified Dark Matter (UDM) fluid models where the pressure and the energy density are linked by a barotropic equation of state (EoS) p = p(\u3c1) and the perturbations are adiabatic. The EoS is assumed to admit a future attractor that acts as an effective cosmological constant, while asymptotically in the past the pressure is negligible. UDM models of the dark sector are appealing because they evade the so-called ``coincidence problem'' and ``predict'' what can be interpreted as wDE 48 121, but in general suffer the effects of a non-negligible Jeans scale that wreak havoc in the evolution of perturbations, causing a large Integrated Sachs-Wolfe effect and/or changing structure formation at small sca...