Measurements of the anisotropy of magnetic susceptibility (AMS) of natural lavas have shown that AMS varies with depth within a lava flow. We have investigated the reasons for such variation by studying the effects of temperature and strain rate on the AMS of recent lava in the laboratory. Samples of lava from Kilauea were melted and subjected to a range of strain rate and cooling histories. The results show that the degree of anisotropy is a function of both the thermal and shearing history of a sample. High degrees of anisotropy were found only in samples that were deformed at temperatures close to those encountered during eruption and then rapidly quenched. Lavas subjected to similar shear stresses at high temperatures had low degrees of...