Security of public keys cryptography is based on difficult mathematic problems, especially in number field theory, such as the factorization for RSA or the discrete logarithm for ElGamal. However, algorithms are more and more efficient to solve these problems. Furthermore, quantum computers would be able to easily break these cryptosystems. Code-based cryptography in rank metric is a solid candidate to design new postquatum cryptosystems since it is fast and has low weight keysize. The goals of this thesis are to study hard problems in rank metric and algorithms which solve them, also to search for new attacks and new primitives based on these problems.La sécurité de la cryptographie à clés publiques repose sur des problèmes mathématiques d...