International audienceA wide range of network management tasks such as balancing bandwidth usage, firewalling, anomaly detection and differentiating traffic pricing, depend on accurate traffic classification. Due to the diversity and variability of network applications, port-based and statistical signature detection approaches become inefficient and hence, behavioral classification approaches have been considered recently. However, so far, there is no automated general method to obtain the behavioral models of applications. In this research, we propose an automatic procedure to infer a transition system model from generated traffic of an application. Our approach is based on passive automata learning theory and evidence driven state merging...