<div><p>When standard optimization methods fail to find a satisfactory solution for a parameter fitting problem, a tempting recourse is to adjust parameters manually. While tedious, this approach can be surprisingly powerful in terms of achieving optimal or near-optimal solutions. This paper outlines an optimization algorithm, Adaptive Stochastic Descent (ASD), that has been designed to replicate the essential aspects of manual parameter fitting in an automated way. Specifically, ASD uses simple principles to form probabilistic assumptions about (a) which parameters have the greatest effect on the objective function, and (b) optimal step sizes for each parameter. We show that for a certain class of optimization problems (namely, those with ...