A fundamental problem when adding column pivoting to the Householder QR fac- torization is that only about half of the computation can be cast in terms of high performing matrix- matrix multiplications, which greatly limits the bene ts that can be derived from so-called blocking of algorithms. This paper describes a technique for selecting groups of pivot vectors by means of randomized projections. It is demonstrated that the asymptotic op count for the proposed method is 2mn2 �����(2=3)n3 for an m n matrix, identical to that of the best classical unblocked Householder QR factorization algorithm (with or without pivoting). Experiments demonstrate acceleration in speed of close to an order of magnitude relative to the geqp3 function...