So-called quantitative electromagnetic imaging focused onto here is the problem of determining material properties from scattered fields measured away from the domain under investigation. Solving this inverse problem is a challenging task because it is ill-posed due to the presence of (smoothing) integral operators used in the representation of scattered fields in terms of material properties, and scattered fields are obtained at a finite set of points through noisy measurements. Moreover, the inverse problem is nonlinear simply due the fact that scattered fields are nonlinear functions of the material properties. The work described in this thesis deals with the ill-posedness of the electromagnetic imaging problem using sparsity-based regul...