© 2016 IEEE. Deep Convolutional Neural Networks (CNNs) have recently evinced immense success for various image recognition tasks [11, 27]. However, a question of paramount importance is somewhat unanswered in deep learning research - is the selected CNN optimal for the dataset in terms of accuracy and model size? In this paper, we intend to answer this question and introduce a novel strategy that alters the architecture of a given CNN for a specified dataset, to potentially enhance the original accuracy while possibly reducing the model size. We use two operations for architecture refinement, viz. stretching and symmetrical splitting. Stretching increases the number of hidden units (nodes) in a given CNN layer, while a symmetrical split of ...