Let G be a group and let KH be homotopy algebraic K-theory. We prove that if G satisfies the rational KH isomorphism conjecture for the group algebra L 1 [G] with coefficients in the algebra of trace-class operators in Hilbert space, then it also satisfies the Ktheoretic Novikov conjecture for the group algebra over the integers, and the rational injectivity part of the Farrell-Jones conjecture with coefficients in any number field.Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones...
We prove the K-theoretic Farrell-Jones conjecture for groups with the Haagerup approximation propert...
We use assembly maps to study TC.AŒG I p/, the topological cyclic homology at a prime p of the group...
Diese Arbeit verfolgt zwei Fragen, die im Zusammenhang mit der Farrell-Jones-Vermutung stehen. Zum E...
Let G be a group and let KH be homotopy algebraic K-theory. We prove that if G satisfies the rationa...
We prove that the Farrell–Jones assembly map for connective algebraic K -theory is rationally injec...
AbstractWe discuss an analogon to the Farrell–Jones Conjecture for homotopy algebraic K-theory. In p...
Las conjeturas de isomorfismo prevén una descripción de la K-teoría (en sus diversas variantes) del ...
Let B be the ring of bounded operators in a complex, separable Hilbert space. For p > 0 consider the...
We prove that the Novikov assembly map for a group G factorizes, in ‘low homological degree’, throug...
The algebraic K-theory of Quillen [30], inherently, is a multiplicative theory. Trace invariants all...
The well known isomorphism relating the rational algebraic K-theory groups and the rational motivic ...
We develop a version of controlled algebra for simplicial rings. This generalizes the methods which ...
Abstract. The aim of this paper is to split the assembly map in K- and L-theory for a class of group...
Let B be the ring of bounded operators in a complex, separable Hilbert space. For p > 0 consider the...
We give a new, conceptual proof and sharp generalization of a Theorem by Cary Malkiwiech [Mal17] abo...
We prove the K-theoretic Farrell-Jones conjecture for groups with the Haagerup approximation propert...
We use assembly maps to study TC.AŒG I p/, the topological cyclic homology at a prime p of the group...
Diese Arbeit verfolgt zwei Fragen, die im Zusammenhang mit der Farrell-Jones-Vermutung stehen. Zum E...
Let G be a group and let KH be homotopy algebraic K-theory. We prove that if G satisfies the rationa...
We prove that the Farrell–Jones assembly map for connective algebraic K -theory is rationally injec...
AbstractWe discuss an analogon to the Farrell–Jones Conjecture for homotopy algebraic K-theory. In p...
Las conjeturas de isomorfismo prevén una descripción de la K-teoría (en sus diversas variantes) del ...
Let B be the ring of bounded operators in a complex, separable Hilbert space. For p > 0 consider the...
We prove that the Novikov assembly map for a group G factorizes, in ‘low homological degree’, throug...
The algebraic K-theory of Quillen [30], inherently, is a multiplicative theory. Trace invariants all...
The well known isomorphism relating the rational algebraic K-theory groups and the rational motivic ...
We develop a version of controlled algebra for simplicial rings. This generalizes the methods which ...
Abstract. The aim of this paper is to split the assembly map in K- and L-theory for a class of group...
Let B be the ring of bounded operators in a complex, separable Hilbert space. For p > 0 consider the...
We give a new, conceptual proof and sharp generalization of a Theorem by Cary Malkiwiech [Mal17] abo...
We prove the K-theoretic Farrell-Jones conjecture for groups with the Haagerup approximation propert...
We use assembly maps to study TC.AŒG I p/, the topological cyclic homology at a prime p of the group...
Diese Arbeit verfolgt zwei Fragen, die im Zusammenhang mit der Farrell-Jones-Vermutung stehen. Zum E...