Este artículo presenta los resultados del uso de Redes Neuronales Artificiales (RNA) para la estimación de secciones óptimas de vigas y columnas en concreto reforzado en edificaciones aporticadas simétricas de 1 a 6 pisos teniendo en cuenta los requisitos mínimos exigidos en la NSR-10 relacionados con la deriva y el diseño sísmico. Además se estudió la sensibilidad de la deriva respecto a los valores de dimensiones de vigas y de columnas, para que una vez se tenga una mejor comprensión de dicha relación, se puedan obtener diseños óptimos de manera más rápida, sencilla y confiable en comparación con los procedimientos utilizados actualmente.This article presents the application of Artificial Neural Networks (ANN) to estimate optimal sections...
Resumen En diseño y construcción de estructuras de concreto, la resistencia a compresión lograda a l...
This study proposes an artificial neural network for a design of reinforced concrete (RC) columns fo...
The present study investigates the potential of the implementation of machine learning techniques in...
RESUMEN: Este artículo presenta los resultados del uso de Redes Neuronales Artificiales (RNA) para l...
En el presente artículo se investiga la implementación de las Redes Neuronales Artificiales como un ...
The objective of this study is to investigate the adequacy of Artificial Neural Networks (ANN) as a ...
An artificial neural network model is developed to predict the shear capacity of reinforced concrete...
[[abstract]]To solve structural optimization problems, it is necessary to integrate a structural ana...
In the last decade, conventional materials such as steel and concrete are being replaced by fiber re...
Design optimizations of round reinforced concrete columns based on artificial neural networks (ANNs)...
This paper aims to explore the feasibility of the potential use of artificial neural networks (ANN) ...
87-94In this study, artificial neural network (ANN) method is used to predict the deflection value...
This paper aims to explore the feasibility of the potential use of artificial neural networks (ANN) ...
The seismic analysis of reinforced concrete (RC) structures generally requires significant computati...
An artificial neural network model is developed to predict the shear capacity of reinforced concrete...
Resumen En diseño y construcción de estructuras de concreto, la resistencia a compresión lograda a l...
This study proposes an artificial neural network for a design of reinforced concrete (RC) columns fo...
The present study investigates the potential of the implementation of machine learning techniques in...
RESUMEN: Este artículo presenta los resultados del uso de Redes Neuronales Artificiales (RNA) para l...
En el presente artículo se investiga la implementación de las Redes Neuronales Artificiales como un ...
The objective of this study is to investigate the adequacy of Artificial Neural Networks (ANN) as a ...
An artificial neural network model is developed to predict the shear capacity of reinforced concrete...
[[abstract]]To solve structural optimization problems, it is necessary to integrate a structural ana...
In the last decade, conventional materials such as steel and concrete are being replaced by fiber re...
Design optimizations of round reinforced concrete columns based on artificial neural networks (ANNs)...
This paper aims to explore the feasibility of the potential use of artificial neural networks (ANN) ...
87-94In this study, artificial neural network (ANN) method is used to predict the deflection value...
This paper aims to explore the feasibility of the potential use of artificial neural networks (ANN) ...
The seismic analysis of reinforced concrete (RC) structures generally requires significant computati...
An artificial neural network model is developed to predict the shear capacity of reinforced concrete...
Resumen En diseño y construcción de estructuras de concreto, la resistencia a compresión lograda a l...
This study proposes an artificial neural network for a design of reinforced concrete (RC) columns fo...
The present study investigates the potential of the implementation of machine learning techniques in...