Plasmon-resonant nanoparticle complexes show promising potential for light-triggered, controllable delivery of deoxyribonucleic acids (DNA) for research and therapeutic purposes. For example, the approach of RNA interference (RNAi) ‒ using antisense DNA or RNA oligonucleotides to silence activity of a specific pathogenic gene transcript and reduce expression of the encoded protein ‒ is very useful in dissecting genetic function and holds promise as a molecular therapeutic. Herein, we investigate the mechanism and probe the in vitro therapeutic potential of DNA light-triggered release from plasmonic nanoparticles. First, we investigate the mechanism of light-triggered release by dehybridizing double-stranded (dsDNA) via laser illuminati...