Software bugs are a persistent feature of daily life---crashing web browsers, allowing cyberattacks, and distorting the results of scientific computations. One approach to improving software uses program invariants---mathematical descriptions of program behaviors---to verify code and detect bugs. Current invariant generation techniques lack support for complex yet important forms of invariants, such as general polynomial relations and properties of arrays. As a result, we lack the ability to conduct precise analysis of programs that use this common data structure. This dissertation presents DIG, a static and dynamic analysis framework for discovering several useful classes of program invariants, including (i) nonlinear polynomial relati...