Les calculs numériques ont été effectués à l'aide du logiciel SAGE.En 1993, Conway et Schneeberger fournirent un critère simple permettant de déterminer si une forme quadratique donnée représente tous les entiers positifs ; le théorème des 15. Dans ce mémoire, nous nous intéressons à un problème analogue, soit la recherche d’un critère similaire permettant de détecter si une forme quadratique en trois variables représente tous les entiers impairs. On débute donc par une introduction générale à la théorie des formes quadratiques, notamment en deux variables, puis on expose différents points de vue sous lesquels on peut les considérer. On décrit ensuite le théorème des 15 et ses généralisations, en soulignant les techniques utilisées d...
A central method in the theory of quadratic forms is the study of function fields of projective quad...
Legendre first, and then Gauss, proved that f = x^2 + y^2 + z^2 represents every positive integer no...
Les percées du professeur Manjul Bhargava constituent non seulement une nouvelle approche des formes...
The Fifteen Theorem deals with universal integral quadratic form. In 1770 Lagrange proved that the q...
Dans un précédent article, nous avons donné un algorithme pour la réduction des formes quadratiques ...
Copyright c © 2013 Cherng-tiao Perng. This is an open access article distributed under the Creative ...
The recent exciting results by Bhargava, Conway, Hanke, Kaplansky, Rouse, and Schneeberger concernin...
In 1993, Conway formulated a remarkable conjecture regarding universal quadratic forms, i.e., intege...
In this paper we give a formula for the number of representations of some square-free integers by ce...
Abstract. We consider the problem of classifying all positive-definite integer-valued quadratic form...
This paper deals with the representation by the quadratic form in three variables with odd prime inv...
This monograph presents combinatorial and numerical issues on integral quadratic forms as originally...
AbstractA result from 1988 on the square-free integers represented by a positive definite ternary qu...
We study the problem of universal quadratic forms, whose solution is given by the recent paper of Bh...
This all must go back to people such as Legendre, Dirichlet, and Gauss. I have no idea, really. We u...
A central method in the theory of quadratic forms is the study of function fields of projective quad...
Legendre first, and then Gauss, proved that f = x^2 + y^2 + z^2 represents every positive integer no...
Les percées du professeur Manjul Bhargava constituent non seulement une nouvelle approche des formes...
The Fifteen Theorem deals with universal integral quadratic form. In 1770 Lagrange proved that the q...
Dans un précédent article, nous avons donné un algorithme pour la réduction des formes quadratiques ...
Copyright c © 2013 Cherng-tiao Perng. This is an open access article distributed under the Creative ...
The recent exciting results by Bhargava, Conway, Hanke, Kaplansky, Rouse, and Schneeberger concernin...
In 1993, Conway formulated a remarkable conjecture regarding universal quadratic forms, i.e., intege...
In this paper we give a formula for the number of representations of some square-free integers by ce...
Abstract. We consider the problem of classifying all positive-definite integer-valued quadratic form...
This paper deals with the representation by the quadratic form in three variables with odd prime inv...
This monograph presents combinatorial and numerical issues on integral quadratic forms as originally...
AbstractA result from 1988 on the square-free integers represented by a positive definite ternary qu...
We study the problem of universal quadratic forms, whose solution is given by the recent paper of Bh...
This all must go back to people such as Legendre, Dirichlet, and Gauss. I have no idea, really. We u...
A central method in the theory of quadratic forms is the study of function fields of projective quad...
Legendre first, and then Gauss, proved that f = x^2 + y^2 + z^2 represents every positive integer no...
Les percées du professeur Manjul Bhargava constituent non seulement une nouvelle approche des formes...