This work reports a new methodology for deriving monthly averages of temperature (T) and salinity (S) fields for the Indian Ocean based on the use of an artificial neural network (ANN). Investigation and analysis were performed for this region with two distinct datasets: (1) monthly climatological data for T and S fields (in 1° � 1° grid boxes) at standard depth levels of the World Ocean Atlas 1994 (WOA94), and; (2) heterogeneous randomly distributed in situ ARGO, ocean station data (OSD) and profiling (PFL) floats. A further numerical experiment was conducted with these two distinct datasets to train the neural network model. Nonlinear regression mapping utilizing a multilayer perceptron (MLP) is employed to tackle nonlinearity in the d...