Hyperbolicity plays an important role in the study of dynamical systems, and is a key concept in the iteration of rational functions of one complex variable. Hyperbolic systems have also been considered in the study of transcendental entire functions. There does not appear to be an agreed definition of the concept in this context, due to complications arising from the non-compactness of the phase space. In this article, we consider a natural definition of hyperbolicity that requires expanding properties on the preimage of a punctured neighbourhood of the isolated singularity. We show that this definition is equivalent to another commonly used one: a transcendental entire function is hyperbolic if and only if its postsingular set is a compac...
Treballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelon...
We provide a generalmechanismfor obtaining uniforminformation from pointwise data. A sample result i...
The dynamics of hyperbolic systems is considered well understood from topological point of view as w...
Hyperbolicity plays an important role in the study of dynamical systems, and is a key concept in the...
Hyperbolicity plays an important role in the study of dynamical systems, and is a key concept in the...
We prove density of hyperbolicity in spaces of (i) real transcendental entire functions, bounded on ...
Agraïments: The third author was supported by a Philip Leverhulme Prize.We show that an invariant Fa...
We show that an invariant Fatou component of a hyperbolic transcendental entire function is a bounde...
We show that an invariant Fatou component of a hyperbolic transcenden- tal entire function is a Jord...
The Eremenko-Lyubich class of transcendental entire functions with a bounded set of singular values ...
We prove density of hyperbolicity in spaces of (i) real transcendental entire functions, bounded on ...
Let f be a function in the Eremenko-Lyubich class , and let U be an unbounded, forward invariant Fat...
Abstract. We show that there exists a hyperbolic entire function f of finite order of growth such th...
Let $f$ be a function in the Eremenko-Lyubich class $\mathscr{B}$, and let $U$ be an unbounded, forw...
The study of the dynamics of polynomials is now a major field of research, with many important and e...
Treballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelon...
We provide a generalmechanismfor obtaining uniforminformation from pointwise data. A sample result i...
The dynamics of hyperbolic systems is considered well understood from topological point of view as w...
Hyperbolicity plays an important role in the study of dynamical systems, and is a key concept in the...
Hyperbolicity plays an important role in the study of dynamical systems, and is a key concept in the...
We prove density of hyperbolicity in spaces of (i) real transcendental entire functions, bounded on ...
Agraïments: The third author was supported by a Philip Leverhulme Prize.We show that an invariant Fa...
We show that an invariant Fatou component of a hyperbolic transcendental entire function is a bounde...
We show that an invariant Fatou component of a hyperbolic transcenden- tal entire function is a Jord...
The Eremenko-Lyubich class of transcendental entire functions with a bounded set of singular values ...
We prove density of hyperbolicity in spaces of (i) real transcendental entire functions, bounded on ...
Let f be a function in the Eremenko-Lyubich class , and let U be an unbounded, forward invariant Fat...
Abstract. We show that there exists a hyperbolic entire function f of finite order of growth such th...
Let $f$ be a function in the Eremenko-Lyubich class $\mathscr{B}$, and let $U$ be an unbounded, forw...
The study of the dynamics of polynomials is now a major field of research, with many important and e...
Treballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelon...
We provide a generalmechanismfor obtaining uniforminformation from pointwise data. A sample result i...
The dynamics of hyperbolic systems is considered well understood from topological point of view as w...