Neste trabalho é descrito uma seqüência de procedimentos para estimar parâmetros e selecionar ordem de modelos Auto-Regressivos com heterocedasticidade, ARCH(p), e Auto- Regressivos generalizados, GARCH(p,q). As estimativas são obtidas utilizando duas técnicas: a inferência clássica e a bayesiana em conjunto com simulação de Monte Carlo em Cadeia de Markov (MCMC). Na análise bayesiana utilizamos densidades a priori normais para os parâmetros do modelo. Os métodos desenvolvidos foram aplicados em duas séries geradas e em três séries do mercado financeiro: Índice Bovespa, Telebrás e Cotação em Dólar Americano da moeda Iene Japonês. Em geral, as estimativas de máxima verossimilhança e bayesiana apresentaram resultados próximos. Porém, em algum...