We present a novel approach for accurate characterization of workloads. Workloads are generally described with statistical models and are based on the analysis of resource requests measurements of a running program. In this paper we propose to consider the sequence of virtual memory references generated from a program during its execution as a temporal series, and to use spectral analysis principles to process the sequence. However, the sequence is time-varying, so we employed processing approaches based on Ergodic Continuous Hidden Markov Models (ECHMMs) which extend conventional stationary spectral analysis approaches to the analysis of time-varying sequences. In this work, we describe two applications of the proposed approach: the on-lin...