We introduce a calculus for reasoning about programs in total correctness which blends UTP designs with von Wright’s notion of a demonic refinement algebra. We demonstrate its utility in verifying the familiar loop-invariant rule for refining a total-correctness specification by a while loop. Total correctness equates non-termination with completely chaotic behaviour, with the consequence that any situation which admits non-termination must also admit arbitrary terminating behaviour. General correctness is more discriminating in allowing nontermination to be specified together with more particular terminating behaviour. We therefore introduce an analogous calculus for reasoning about programs in general correctness which blends UTP prescrip...