Simulations provide a way of generating data where ground truth is known, enabling quantitative testing of image processing methods. In this paper, we present the construction of 20 realistic digital brain phantoms that can be used to simulate medical imaging data. The phantoms are made from 20 normal adults to take into account intersubject anatomical variabilities. Each digital brain phantom was created by registering and averaging four T1, T2, and proton density (PD)-weighted magnetic resonance imaging (MRI) scans from each subject. A fuzzy minimum distance classification was used to classify voxel intensities from T1, T2, and PD average volumes into grey-matter, white matter, cerebro-spinal fluid, and fat. Automatically generated mask v...