<p>For coupling intensity (a) <i>D</i> = 0.4, (b) <i>D</i> = 0.5, (c) <i>D</i> = 0.6, (d) <i>D</i> = 0.7, (e) <i>D</i> = 0.8, (<i>f</i>) <i>D</i> = 0.9, (<i>g</i>) <i>D</i> = 1.1, (h) <i>D</i> = 1.2, (i) <i>D</i> = 1.3, (<i>j</i>) <i>D</i> = 1.5. Where <i>g</i> = −1.5, <i>τ</i> = 30, <i>I<sub>ext</sub></i> = 1.0, <i>D</i><sub>0</sub> = 0.01 and periodical boundary condition is used.</p
<p><b>A,B.</b> Top: The – curves (green) for GS neurons ( pS/µm<sup>2</sup> and pS/µm<sup>2</sup>) ...
<p>A–D: Stable (solid black) and unstable (dashed grey) phase locked states of coupled pairs of Trau...
<p>A: Mean spike-triggered multi-unit activity (S-MUA) in active (full line) and quiescent state (da...
<p>For coupling intensity (a) <i>D</i> = 0.4, (b) <i>D</i> = 0.5, (c) <i>D</i> = 0.6, (d) <i>D</i> =...
<p>For noise intensity (a) <i>D</i><sub>0</sub> = 0.005, (b) <i>D</i><sub>0</sub> = 0.01, (c) <i>D</...
<p>For noise intensity (a) <i>D</i><sub>0</sub> = 0.005, (b) <i>D</i><sub>0</sub> = 0.01, (c) <i>D</...
<p>(a) The coupling strength matrix. Starting from a random initial condition (not shown), consecuti...
<p>In (A-C) a single parameter is varied (two values are shown) and the coupling between model neuro...
<p>Discrete-time rate evolution. <b>a-b.</b> Network discrete-time activity: numerical integration o...
<p>Left panel: <i>J</i><sub><i>Inf</i></sub><i>vs</i><i>J</i><sub><i>True</i></sub>. Right panel: </...
<p>Modified Wang and Buzsái model neurons are used to compute PRCs at two parameter sets (a) resulti...
Numerical integration of the dynamics for the network with adaptive neurons (row A) and the network ...
<p>The mean firing rate versus coupling strength for chemically-coupled neurons with excitatory conn...
<p><b>A-B</b>: The inter-spike-interval CVs from simulated spike trains versus the neuron’s in degre...
<p>Oscillatory population spike rate and mean adaptation current of 50,000 excitatory coupled aEIF n...
<p><b>A,B.</b> Top: The – curves (green) for GS neurons ( pS/µm<sup>2</sup> and pS/µm<sup>2</sup>) ...
<p>A–D: Stable (solid black) and unstable (dashed grey) phase locked states of coupled pairs of Trau...
<p>A: Mean spike-triggered multi-unit activity (S-MUA) in active (full line) and quiescent state (da...
<p>For coupling intensity (a) <i>D</i> = 0.4, (b) <i>D</i> = 0.5, (c) <i>D</i> = 0.6, (d) <i>D</i> =...
<p>For noise intensity (a) <i>D</i><sub>0</sub> = 0.005, (b) <i>D</i><sub>0</sub> = 0.01, (c) <i>D</...
<p>For noise intensity (a) <i>D</i><sub>0</sub> = 0.005, (b) <i>D</i><sub>0</sub> = 0.01, (c) <i>D</...
<p>(a) The coupling strength matrix. Starting from a random initial condition (not shown), consecuti...
<p>In (A-C) a single parameter is varied (two values are shown) and the coupling between model neuro...
<p>Discrete-time rate evolution. <b>a-b.</b> Network discrete-time activity: numerical integration o...
<p>Left panel: <i>J</i><sub><i>Inf</i></sub><i>vs</i><i>J</i><sub><i>True</i></sub>. Right panel: </...
<p>Modified Wang and Buzsái model neurons are used to compute PRCs at two parameter sets (a) resulti...
Numerical integration of the dynamics for the network with adaptive neurons (row A) and the network ...
<p>The mean firing rate versus coupling strength for chemically-coupled neurons with excitatory conn...
<p><b>A-B</b>: The inter-spike-interval CVs from simulated spike trains versus the neuron’s in degre...
<p>Oscillatory population spike rate and mean adaptation current of 50,000 excitatory coupled aEIF n...
<p><b>A,B.</b> Top: The – curves (green) for GS neurons ( pS/µm<sup>2</sup> and pS/µm<sup>2</sup>) ...
<p>A–D: Stable (solid black) and unstable (dashed grey) phase locked states of coupled pairs of Trau...
<p>A: Mean spike-triggered multi-unit activity (S-MUA) in active (full line) and quiescent state (da...