We evaluate the performance of density cumulant functional theory (DCT) for capturing static correlation effects. In particular, we examine systems with significant multideterminant character of the electronic wave function, such as the beryllium dimer, diatomic carbon, <i>m</i>-benzyne, 2,6-pyridyne, twisted ethylene, as well as the barrier for double-bond migration in cyclobutadiene. We compute molecular properties of these systems using the ODC-12 and DC-12 variants of DCT and compare these results to multireference configuration interaction and multireference coupled-cluster theories, as well as single-reference coupled-cluster theory with single, double (CCSD), and perturbative triple excitations [CCSD(T)]. For all systems the DCT met...