Let K be a fixed number field, let p be a prime number, and let Z_p denote the additive group of p-adic integers. The growth of the p-Sylow subgroups of the ideal class groups of the intermediate fields in a Z_p-extension L of K may be explicitly described in terms of the so-called Iwasawa invariants of L/K. In this thesis, we define a certain topology on the set of Z_p-extensions of the number field K, and we prove that Iwasawa's invariants are locally maximal with respect to this topology. Furthermore, we develop necessary and sufficient criteria for the invariants to be globally bounded. Finally, we generalise to the study of multiple Z_p-extensions and obtain similar results for generalised Iwasawa invariants. Our main tool is a met...
Published in: Annales Mathématiques Blaise Pascal, 24(2) (2017), 235--291.Let k be a totally real nu...
We consider Z N p-extensions F of a global function field F and study various aspects of Iwasawa the...
This thesis covers the factorization properties of number fields, and presents the structures necess...
AbstractLet K be a CM field with K+ its maximal real subfield. Let λ, λ+ be the Iwasawa λ-invariants...
AbstractIt is a basic problem in Iwasawa theory that the existence of a Zp-extension with prescribed...
AbstractIt is a basic problem in Iwasawa theory that the existence of a Zp-extension with prescribed...
Abstract. In this paper we study the Iwasawa theory of Zdp-extensions of global function fields k ov...
Le but de cette thèse est l'étude des invariants d'Iwasawa attachés aux p-groupes des classes généra...
1. Introduction. Let k be a totally real number field. Let p be a fixed prime number and ℤₚ the ring...
This thesis aim at exploring Iwasawa invariants attached to generalized p-class groups in p-adic Lie...
This thesis aim at exploring Iwasawa invariants attached to generalized p-class groups in p-adic Lie...
Le but de cette thèse est l'étude des invariants d'Iwasawa attachés aux p-groupes des classes généra...
AbstractWe fix a rational prime p, possibly 2, and a CM field K. Let AK∞− denote the minus component...
Published in: Annales Mathématiques Blaise Pascal, 24(2) (2017), 235--291.Let k be a totally real nu...
Published in: Annales Mathématiques Blaise Pascal, 24(2) (2017), 235--291.Let k be a totally real nu...
Published in: Annales Mathématiques Blaise Pascal, 24(2) (2017), 235--291.Let k be a totally real nu...
We consider Z N p-extensions F of a global function field F and study various aspects of Iwasawa the...
This thesis covers the factorization properties of number fields, and presents the structures necess...
AbstractLet K be a CM field with K+ its maximal real subfield. Let λ, λ+ be the Iwasawa λ-invariants...
AbstractIt is a basic problem in Iwasawa theory that the existence of a Zp-extension with prescribed...
AbstractIt is a basic problem in Iwasawa theory that the existence of a Zp-extension with prescribed...
Abstract. In this paper we study the Iwasawa theory of Zdp-extensions of global function fields k ov...
Le but de cette thèse est l'étude des invariants d'Iwasawa attachés aux p-groupes des classes généra...
1. Introduction. Let k be a totally real number field. Let p be a fixed prime number and ℤₚ the ring...
This thesis aim at exploring Iwasawa invariants attached to generalized p-class groups in p-adic Lie...
This thesis aim at exploring Iwasawa invariants attached to generalized p-class groups in p-adic Lie...
Le but de cette thèse est l'étude des invariants d'Iwasawa attachés aux p-groupes des classes généra...
AbstractWe fix a rational prime p, possibly 2, and a CM field K. Let AK∞− denote the minus component...
Published in: Annales Mathématiques Blaise Pascal, 24(2) (2017), 235--291.Let k be a totally real nu...
Published in: Annales Mathématiques Blaise Pascal, 24(2) (2017), 235--291.Let k be a totally real nu...
Published in: Annales Mathématiques Blaise Pascal, 24(2) (2017), 235--291.Let k be a totally real nu...
We consider Z N p-extensions F of a global function field F and study various aspects of Iwasawa the...
This thesis covers the factorization properties of number fields, and presents the structures necess...