<div><p>High-grade serous carcinoma (HGSC) is the most common and deadliest form of ovarian cancer. Yet it is largely asymptomatic in its initial stages. Studying the origin and early progression of this disease is thus critical in identifying markers for early detection and screening purposes. Tissue-based mass spectrometry imaging (MSI) can be employed as an unbiased way of examining localized metabolic changes between healthy and cancerous tissue directly, at the onset of disease. In this study, we describe MSI results from <i>Dicer-Pten</i> double-knockout (DKO) mice, a mouse model faithfully reproducing the clinical nature of human HGSC. By using non-negative matrix factorization (NMF) for the unsupervised analysis of desorption electr...