Financial time series tend to behave in a manner that is not directly drawn from a normal distribution. Asymmetries and nonlinearities are usually seen and these characteristics need to be taken into account. To make forecasts and predictions of future return and risk is rather complicated. The existing models for predicting risk are of help to a certain degree, but the complexity in financial time series data makes it difficult. The introduction of nonlinearities and asymmetries for the purpose of better models and forecasts regarding both mean and variance is supported by the essays in this dissertation. Linear and nonlinear models are consequently introduced in this dissertation. The advantages of nonlinear models are that they can take...