It usually takes a fusion of image processing and machine learning algorithms in order to build a fully-functioning computer vision system for hand gesture recognition. Fortunately, the complexity of developing such a system could be alleviated by treating the system as a collection of multiple sub-systems working together, in such a way that they can be dealt with in isolation. Machine learning need to feed on thousands of exemplars (e.g. images, features) to automatically establish some recognisable patterns for all possible classes (e.g. hand gestures) that applies to the problem domain. A good number of exemplars helps, but it is also important to note that the efficacy of these exemplars depends on the variability of illuminati...