Multisymplectic integration is a relatively new addition to the field of geometric integration, which is a modern approach to the numerical integration of systems of differential equations. Multisymplectic integration is carried out by numerical integrators known as multisymplectic integrators, which preserve a discrete analogue of a multisymplectic conservation law. In recent years, it has been shown that various discretisations of a multi-Hamiltonian PDE satisfy a discrete analogue of a multisymplectic conservation law. In particular, discretisation in time and space by the popular symplectic Runge–Kutta methods has been shown to be multisymplectic. However, a multisymplectic integrator not only needs to satisfy a discrete multis...