High-frequency ultrasound imaging (at >20 MHz) has gained widespread attention due to its high spatial resolution being useful for basic cardiovascular and cancer research involving small animals. The sampling rate of the analog-to-digital converter in a high-frequency ultrasound system usually needs to be higher than 120 MHz in order to satisfy the Nyquist sampling-rate requirement. However, the sampling rate is typically within the range of 40–60 MHz in a traditional ultrasound system, and so we propose a delayed-excitation method for performing high-frequency ultrasound imaging with a traditional data acquisition scheme. In this method, the transmitted pulse is delayed by a certain time period so that the ultrasound echo data are aligned...