In recent years, neural network accelerators have been shown to achieve both high energy efficiency and high performance for a broad application scope within the important category of recognition and mining applications. Still, both the energy efficiency and performance of such accelerators remain limited by memory accesses. In this paper, we focus on image applications, arguably the most important category among recognition and mining applications. The neural networks which are state-of-the-art for these applications are convolutional neural networks (CNNs), and they have an important property: weights are shared among many neurons, considerably reducing the neural network memory footprint. This property allows to entirely map a CNN within...