The finite cell method (FCM) belongs to the class of immersed boundary methods, and combines the fictitious domain approach with high-order approximation, adaptive integration and weak imposition of unfitted Dirichlet boundary conditions. Its main idea consists of the extension of the physical domain of interest beyond its potentially complex boundaries into a larger embedding domain of simple geometry, which can be meshed easily by a structured grid. We present an isogeometric design-through-analysis methodology based on the B-spline version of the finite cell method, which allows for the seamless integration of fully three-dimensional parameterizations of complex engineering parts described by T-spline surfaces into finite element analysi...