This paper analyzes complexities of decision diagrams for elementary functions such as polynomial, trigonometric, logarithmic, square root, and reciprocal functions. These real functions are converted into integer-valued functions by using fixed-point representation. This paper presents the numbers of nodes in decision diagrams representing the integer-valued functions. First, complexities of decision diagrams for polynomial functions are analyzed, since elementary functions can be approximated by polynomial functions. A theoretical analysis shows that binary moment diagrams (BMDs) have low complexity for polynomial functions. Second, this paper analyzes complexity of edge-valued binary decision diagrams (EVBDDs) for monotone functions, sin...