When extracting features from image data, the type of information that can be extracted may be strongly dependent on the scales at which the feature detectors are applied. This article presents a systematic methodology for addressing this problem. A mechanism is presented for automatic selection of scale levels when detecting one-dimensional features, such as edges and ridges. A novel concept of a scale-space edge is introduced, defined as a connected set of points in scale-space at which: (i) the gradient magnitude assumes a local maximum in the gradient direction, and (ii) a normalized measure of the strength of the edge response is locally maximal over scales. An important property of this definition is that it allows the scale levels to...