The definition of a metric between time series is inherent to several data analysis and mining tasks, including clustering, classification or forecasting. Time series data present naturally several characteristics, called modalities, covering their amplitude, behavior or frequential spectrum, that may be expressed with varying delays and at different temporal granularity and localization - exhibited globally or locally. Combining several modalities at multiple temporal scales to learn a holistic metric is a key challenge for many real temporal data applications. This PhD proposes a Multi-modal and Multi-scale Temporal Metric Learning (M2TML) approach for robust time series nearest neighbors classification. The solution is based on the emb...