International audienceIn this paper we look for the domains minimizing the h-th eigenvalue of the Dirichlet-Laplacian λ h with a constraint on the diameter. Existence of an optimal domain is easily obtained, and is attained at a constant width body. In the case of a simple eigenvalue, we provide non standard (i.e., non local) optimality conditions. Then we address the question whether or not the disk is an optimal domain in the plane, and we give the precise list of the 17 eigenvalues for which the disk is a local minimum. We conclude by some numerical simulations showing the 20 first optimal domains in the plane
Abstract. Given a bounded domain Ω ⊂ Rn, numbers p> 1, α ≥ 0 and A ∈ [0, |Ω|], consider the optim...
International audienceWe consider the problem of optimizing the k th eigenvalue of the Dirichlet Lap...
International audienceWe consider the problem of optimizing the k th eigenvalue of the Dirichlet Lap...
Minimization of the Dirichlet eigenvalues of the Laplacian among sets of prescribed measure is a sta...
International audienceInside a fixed bounded domain Ω of the plane, we look for the best compact con...
In this paper, we are interested in the minimization of the second eigenvalue of the Laplacian with ...
AbstractApproximation formulas for the eigenvalues of the Laplacian with Dirichlet boundary conditio...
Le problème de l'optimisation des valeurs propres du Laplacien est ancien puisqu'à la fin du XIXème ...
AbstractApproximation formulas for the eigenvalues of the Laplacian with Dirichlet boundary conditio...
International audienceWe develop the first numerical study in four dimension of optimal eigenmodes a...
International audienceWe develop the first numerical study in four dimension of optimal eigenmodes a...
International audienceIn this paper, we address the problem of maximizing the Steklov eigenvalues wi...
We introduce a new numerical method to approximate partitions of a domain minimizing the sum of Diri...
Given a bounded domain Ω ⊂ Rn, numbers p > 1, ∝ ≥ 0 and A ∈ /0, /Ω/], ...
International audienceIn this article we are interested in studying partitions of the square, the di...
Abstract. Given a bounded domain Ω ⊂ Rn, numbers p> 1, α ≥ 0 and A ∈ [0, |Ω|], consider the optim...
International audienceWe consider the problem of optimizing the k th eigenvalue of the Dirichlet Lap...
International audienceWe consider the problem of optimizing the k th eigenvalue of the Dirichlet Lap...
Minimization of the Dirichlet eigenvalues of the Laplacian among sets of prescribed measure is a sta...
International audienceInside a fixed bounded domain Ω of the plane, we look for the best compact con...
In this paper, we are interested in the minimization of the second eigenvalue of the Laplacian with ...
AbstractApproximation formulas for the eigenvalues of the Laplacian with Dirichlet boundary conditio...
Le problème de l'optimisation des valeurs propres du Laplacien est ancien puisqu'à la fin du XIXème ...
AbstractApproximation formulas for the eigenvalues of the Laplacian with Dirichlet boundary conditio...
International audienceWe develop the first numerical study in four dimension of optimal eigenmodes a...
International audienceWe develop the first numerical study in four dimension of optimal eigenmodes a...
International audienceIn this paper, we address the problem of maximizing the Steklov eigenvalues wi...
We introduce a new numerical method to approximate partitions of a domain minimizing the sum of Diri...
Given a bounded domain Ω ⊂ Rn, numbers p > 1, ∝ ≥ 0 and A ∈ /0, /Ω/], ...
International audienceIn this article we are interested in studying partitions of the square, the di...
Abstract. Given a bounded domain Ω ⊂ Rn, numbers p> 1, α ≥ 0 and A ∈ [0, |Ω|], consider the optim...
International audienceWe consider the problem of optimizing the k th eigenvalue of the Dirichlet Lap...
International audienceWe consider the problem of optimizing the k th eigenvalue of the Dirichlet Lap...