Low temperature methane steam reforming for hydrogen production, using experimental developed Ni/Al2O3 catalysts is studied both experimentally and numerically. The catalytic activity measurements were performed at a temperature range of 500–700 °C with steam to carbon ratio (S/C) of 2 and 3 under atmospheric pressure conditions. A mathematical analysis to evaluate the reaction feasibility at all different conditions that have been applied by using chemical equilibrium with applications (CEA) software and in addition, a mathematical model focused on the kinetics and the thermodynamics of the reforming reaction is introduced and applied using a commercial finite element analysis software (COMSOL Multiphysics 5.0). The experimental results we...