Poster presentation A central problem in neuroscience is to bridge local synaptic plasticity and the global behavior of a system. It has been shown that Hebbian learning of connections in a feedforward network performs PCA on its inputs [1]. In recurrent Hopfield network with binary units, the Hebbian-learnt patterns form the attractors of the network [2]. Starting from a random recurrent network, Hebbian learning reduces system complexity from chaotic to fixed point [3]. In this paper, we investigate the effect of Hebbian plasticity on the attractors of a continuous dynamical system. In a Hopfield network with binary units, it can be shown that Hebbian learning of an attractor stabilizes it with deepened energy landscape and larger basin o...