The redshifts of all cosmologically distant sources are expected to experience a small, systematic drift as a function of time due to the evolution of the Universe's expansion rate. A measurement of this effect would represent a direct and entirely model-independent determination of the expansion history of the Universe over a redshift range that is inaccessible to other methods. Here we investigate the impact of the next generation of Extremely Large Telescopes on the feasibility of detecting and characterizing the cosmological redshift drift. We consider the Lya forest in the redshift range 2 < z < 5 and other absorption lines in the spectra of high-redshift QSOs as the most suitable targets for a redshift drift experiment. Assuming photo...