This thesis examines the (geometric) Steiner tree problem: Given a set of points P in the plane, find a shortest tree interconnecting all points in P, with the possibility of adding points outside P, called the Steiner points, as additional vertices of the tree. The Steiner tree problem has been studied in different metric spaces. In this thesis, we study the problem in Euclidean and rectilinear metrics. One of the most natural heuristics for the Steiner tree problem is to use a minimum spanning tree, which can be found in O(nlogn) time . The performance ratio of this heuristic is given by the Steiner ratio, which is defined as the minimum possible ratio between the lengths of a minimum Steiner tree and a minimum spanning tree. We...